K-ANMI: A Mutual Information Based Clustering Algorithm for Categorical Data

نویسندگان

  • Zengyou He
  • Xiaofei Xu
  • Shengchun Deng
چکیده

Clustering categorical data is an integral part of data mining and has attracted much attention recently. In this paper, we present kANMI, a new efficient algorithm for clustering categorical data. The k-ANMI algorithm works in a way that is similar to the popular kmeans algorithm, and the goodness of clustering in each step is evaluated using a mutual information based criterion (namely, average normalized mutual information – ANMI) borrowed from cluster ensemble. This algorithm is easy to implement, requiring multiple hash tables as the only major data structure. Experimental results on real datasets show that k-ANMI algorithm is competitive with those state-of-the-art categorical data clustering algorithms with respect to clustering accuracy. 2006 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

G-ANMI: A mutual information based genetic clustering algorithm for categorical data

Identification of meaningful clusters from categorical data is one key problem in data mining. Recently, Average Normalized Mutual Information (ANMI) has been used to define categorical data clustering as an optimization problem. To find globally optimal or near-optimal partition determined by ANMI, a genetic clustering algorithm (G-ANMI) is proposed in this paper. Experimental results show tha...

متن کامل

Persistent K-Means: Stable Data Clustering Algorithm Based on K-Means Algorithm

Identifying clusters or clustering is an important aspect of data analysis. It is the task of grouping a set of objects in such a way those objects in the same group/cluster are more similar in some sense or another. It is a main task of exploratory data mining, and a common technique for statistical data analysis This paper proposed an improved version of K-Means algorithm, namely Persistent K...

متن کامل

Clustering of a Number of Genes Affecting in Milk Production using Information Theory and Mutual Information

Information theory is a branch of mathematics. Information theory is used in genetic and bioinformatics analyses and can be used for many analyses related to the biological structures and sequences. Bio-computational grouping of genes facilitates genetic analysis, sequencing and structural-based analyses. In this study, after retrieving gene and exon DNA sequences affecting milk yield in dairy ...

متن کامل

ارائه یک الگوریتم خوشه بندی برای داده های دسته ای با ترکیب معیارها

Clustering is one of the main techniques in data mining. Clustering is a process that classifies data set into groups. In clustering, the data in a cluster are the closest to each other and the data in two different clusters have the most difference. Clustering algorithms are divided into two categories according to the type of data: Clustering algorithms for numerical data and clustering algor...

متن کامل

خوشه‌بندی خودکار داده‌های مختلط با استفاده از الگوریتم ژنتیک

In the real world clustering problems, it is often encountered to perform cluster analysis on data sets with mixed numeric and categorical values. However, most existing clustering algorithms are only efficient for the numeric data rather than the mixed data set. In addition, traditional methods, for example, the K-means algorithm, usually ask the user to provide the number of clusters. In this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Information Fusion

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2008